52 research outputs found

    A preconditioned MINRES method for optimal control of wave equations and its asymptotic spectral distribution theory

    Full text link
    In this work, we propose a novel preconditioned Krylov subspace method for solving an optimal control problem of wave equations, after explicitly identifying the asymptotic spectral distribution of the involved sequence of linear coefficient matrices from the optimal control problem. Namely, we first show that the all-at-once system stemming from the wave control problem is associated to a structured coefficient matrix-sequence possessing an eigenvalue distribution. Then, based on such a spectral distribution of which the symbol is explicitly identified, we develop an ideal preconditioner and two parallel-in-time preconditioners for the saddle point system composed of two block Toeplitz matrices. For the ideal preconditioner, we show that the eigenvalues of the preconditioned matrix-sequence all belong to the set (−32,−12)⋃(12,32)\left(-\frac{3}{2},-\frac{1}{2}\right)\bigcup \left(\frac{1}{2},\frac{3}{2}\right) well separated from zero, leading to mesh-independent convergence when the minimal residual method is employed. The proposed {parallel-in-time} preconditioners can be implemented efficiently using fast Fourier transforms or discrete sine transforms, and their effectiveness is theoretically shown in the sense that the eigenvalues of the preconditioned matrix-sequences are clustered around ±1\pm 1, which leads to rapid convergence. When these parallel-in-time preconditioners are not fast diagonalizable, we further propose modified versions which can be efficiently inverted. Several numerical examples are reported to verify our derived localization and spectral distribution result and to support the effectiveness of our proposed preconditioners and the related advantages with respect to the relevant literature

    A novel frame-shift mutation in FRMD7 causes X-linked idiopathic congenital nystagmus in a Chinese family

    Get PDF
    Purpose: To screen mutations in the FERM domain-containing 7 (FRMD7) gene in a Chinese family with X-linked idiopathic congenital nystagmus (ICN). Methods: It has been reported that FRMD7 mutations account for approximately 47% of X-linked nystagmus in Chinese patients. We collected 5 ml of blood samples from members of a family with X-linked ICN and 100 normal controls. Mutations in FRMD7 were determined by sequencing PCR products. Results: We identified a previously unreported 4 bp deletion in FRMD7 (c.1486-1489 del TTTT) in a Chinese family. The mutation co-segregated with the disease phenotype in patients and female carriers, while it was not detected in other relatives or in the 100 normal controls. Conclusions: Our results expand the spectrum of FRMD7 mutations causing ICN, and further confirm the role of FRMD7 in the pathogenesis of ICN. Direct sequencing of FRMD7 could be used as a diagnostic testing of idiopathic congenital nystagmus.Biochemistry & Molecular BiologyOphthalmologySCI(E)PubMed4ARTICLE297-992765-27681

    A new novel mutation in FBN1 causes autosomal dominant Marfan syndrome in a Chinese family

    Get PDF
    Purpose: Screening of mutations in the fibrillin-1 (FBN1) gene in a Chinese family with autosomal dominant Marfan syndrome (MFS). Methods: It has been reported that FBN1 mutations account for approximately 90% of Autosomal Dominant MFS. FBN1 mutations were analyzed in a Chinese family of 36 members including 13 MFS patients. The genomic DNAs from blood leukocytes of the patients and their relatives were isolated and the entire coding region of FBN1 was amplified by PCR. The sequence of FBN1 was dertermined with an ABI 3100 Genetic Analyzer. Results: A previously unreported the missense mutation G214S (caused by a 640 A -> G heterozygous change) in FBN1 was identified in the Chinese family. The mutation was associated with the disease phenotype in patients, but not detected in their relatives or in the 100 normal controls. Conclusions: This is the first report of molecular characterization of FBN1 in the MFS family of Chinese origin. Our results expand the spectrum of FBN1 mutations causing MFS and further confirm the role of FBN1 in the pathogenesis of MFS. Direct sequencing of the mutation in FBN1 may be used for diagnosis of MFS.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000301238300001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Biochemistry & Molecular BiologyOphthalmologySCI(E)PubMed10ARTICLE10-1181-861

    Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    Get PDF
    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions

    Methylation levels at IGF2 and GNAS DMRs in infants born to preeclamptic pregnancies

    Get PDF
    BACKGROUND: Offspring of pregnancy complicated with preeclampsia are at high risk for hypertension, stroke and possibly obesity. The mechanisms behind the association of intrauterine exposure to preeclampsia and high risk of health problems in the later life remain largely unknown. The aims of the current investigation were to determine the changes in DNA methylation at IGF2 and GNAS DMR in offspring of preeclamptic pregnancy and to explore the possible mechanisms underlying the association between maternal preeclampsia and high risk for health problems in the later life of their offspring. RESULTS: Umbilical cord blood was taken from infants born to women of preeclampsia (n=56), gestational hypertension (n=23) and normal pregnancy (n=81). DNA methylation levels of IGF2 and GNAS DMR were determined by Massarray quantitative methylation analysis. Methylation levels at IGF2 DMR were significantly lower in preeclampsia than normal pregnancy. The average methylation level at IGF2 DMR was significantly correlated with preeclampsia even after birth weight, maternal age, gestational age at delivery and fetal gender were adjusted. The difference in methylation level was not significantly different between mild and severe preeclampsia. The methylation level at GNAS DMR was not significantly correlated with birth weight, maternal age, gestational age at delivery, fetal gender, preeclampsia or gestational hypertension. CONCLUSIONS: We concluded preeclampsia induced a decrease in methylation level at IGF 2 DMR, and this might be among the mechanisms behind the association between intrauterine exposure to preeclampsia and high risk for metabolic diseases in the later life of the infants

    Impaired function of dendritic cells within the tumor microenvironment

    Get PDF
    Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy

    Ibuprofen Rescues Abnormalities in Periodontal Tissues in Conditional Presenilin 1 and Presenilin 2 Double Knockout Mice

    Get PDF
    We used forebrain-specific conditional presenilin 1 (PS1) and presenilin 2 (PS2) double knockout mice (dKO mice) that exhibit symptoms of neurodegenerative diseases, especially Alzheimer’s disease, to investigate whether ibuprofen can rescue brain and periodontal tissue abnormalities by attenuating the inflammatory response. Mandibles were dissected for alveolar bone-height analysis. Maxillae were fixed and decalcified for histological observation and osteoclast detection. ELISA measurements from the hippocampus, cortex, and gingiva of the mandibular incisor teeth were used to assay inflammatory mediators. We confirmed periodontal tissue abnormalities and inflammatory responses in brain and periodontal tissues in naive nine- and 12-month-old dKO mice. The other two groups of age-matched dKO mice that received 375-ppm ibuprofen treatment for six consecutive months exhibited significantly attenuated damage in periodontal tissues and reduction in several inflammation-related factors in brain and periodontal tissues. Our findings showed that the anti-inflammatory drug ibuprofen significantly decreased inflammation through the cyclooxygenase (COX) pathway in brain and periodontal tissues in dKO mice, and then attenuated abnormalities in periodontal tissues. This suggests that ibuprofen could be an ideal drug for preventing both nervous system and periodontal tissue damage caused by inflammatory responses

    Ibuprofen Rescues Abnormalities in Periodontal Tissues in Conditional Presenilin 1 and Presenilin 2 Double Knockout Mice

    Get PDF
    We used forebrain-specific conditional presenilin 1 (PS1) and presenilin 2 (PS2) double knockout mice (dKO mice) that exhibit symptoms of neurodegenerative diseases, especially Alzheimer’s disease, to investigate whether ibuprofen can rescue brain and periodontal tissue abnormalities by attenuating the inflammatory response. Mandibles were dissected for alveolar bone-height analysis. Maxillae were fixed and decalcified for histological observation and osteoclast detection. ELISA measurements from the hippocampus, cortex, and gingiva of the mandibular incisor teeth were used to assay inflammatory mediators. We confirmed periodontal tissue abnormalities and inflammatory responses in brain and periodontal tissues in naive nine- and 12-month-old dKO mice. The other two groups of age-matched dKO mice that received 375-ppm ibuprofen treatment for six consecutive months exhibited significantly attenuated damage in periodontal tissues and reduction in several inflammation-related factors in brain and periodontal tissues. Our findings showed that the anti-inflammatory drug ibuprofen significantly decreased inflammation through the cyclooxygenase (COX) pathway in brain and periodontal tissues in dKO mice, and then attenuated abnormalities in periodontal tissues. This suggests that ibuprofen could be an ideal drug for preventing both nervous system and periodontal tissue damage caused by inflammatory responses

    An explicit model predictive control framework for turbocharged diesel engines

    Get PDF
    The turbocharged diesel engine is a typical multi-input multioutput system with strong couplings, actuator constraints, and fast dynamics. This paper addresses the exhaust emission regulation in turbocharged diesel engines using an explicit model predictive control (EMPC) approach, which allows tracking of the time-varying setpoint values generated by the supervisory level controller while satisfying the actuator constraints. The proposed EMPC framework consists of calibration, engine model identification, controller formulation, and state observer design. The proposed EMPC approach has a low computation requirement and is suitable for implementation in the engine control unit on board. The experimental results on a turbocharged Cat C6.6 diesel engine demonstrate that the EMPC controller significantly improves the tracking performance of the exhaust emission variables in comparison with the decoupled single-input single-output control methods
    • …
    corecore